	Question	Answer	Marks	Guidance		
1		$y^2 + 2x \ln y = x^2$				
		$1^2 + 2 \times 1 \times \ln 1 = 1^2$ so (1, 1) lies on the	B1	clear evidence of verification needed	at least " $1 + 0 = 1$ "	
		curve. $2y \frac{dy}{dx} + 2\ln y + 2x \cdot \frac{1}{y} \cdot \frac{dy}{dx} = 2x$	M1 M1 A1 cao	$d/dx (y^2) = 2ydy/dx$ $d/dx (2x \ln y) = 2\ln y + 2x/y dy/dx$	must be correct must be correct condone $dy/dx = \dots$ unless pursued	
		$[\Rightarrow \frac{dy}{dx} = \frac{2x - 2\ln y}{2y + 2x / y}]$ when $x = 1, y = 1, \frac{dy}{dx} = \frac{2 - 2\ln 1}{2 + 2}$ $= \frac{1}{2}$	M1 A1cao	substituting both $x = 1$ and $y = 1$ into their dy/dx or their equation in x , y and dy/dx not from wrong working	$2\frac{dy}{dx} + 2\ln 1 + 2\frac{dy}{dx} = 2$	
			[6]			

2	(i)	$2x + 4y\frac{\mathrm{d}y}{\mathrm{d}x} = 4$	M1	$4y\frac{\mathrm{d}y}{\mathrm{d}x}$	Rearranging for <i>y</i> and differentiating explicitly is M0
			A1	correct equation	Ignore superfluous $dy/dx = \dots$ unless used subsequently
		$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4-2x}{4y}$	A1	o.e., but mark final answer	
			[3]		
2	(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies x = 2$	B1dep	dep correct derivative	
		$\Rightarrow 4 + 2y^2 = 8 \Rightarrow y^2 = 2, y = \sqrt{2} \text{ or } -\sqrt{2}$	B1B1	$\sqrt{2}, -\sqrt{2}$	can isw, penalise inexact answers of ± 1.41 or better once only
			[3]		-1 for extra solutions found from using $y = 0$

3	$y = \ln\left(\sqrt{\frac{2x-1}{2x+1}}\right) = \frac{1}{2}(\ln(2x-1) - \ln(2x+1))$	M1	use of $\ln(a/b) = \ln a - \ln b$
		M1	use of $\ln\sqrt{c} = \frac{1}{2} \ln c$
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \left(\frac{2}{2x-1} - \frac{2}{2x+1} \right)$	A1	o.e.; correct expression (if this line of working is missing, M1M1A0A0)
	$=\frac{1}{2x-1} - \frac{1}{2x+1} *$	A1	NB AG
		[4]	for alternative methods, see additional solutions

4	(i)	$x^{3} + y^{3} = 3xy$ $\Rightarrow 3x^{2} + 3y^{2}(dy/dx) = 3x(dy/dx) + 3y$ $\Rightarrow (3y^{2} - 3x)(dy/dx) = 3y - 3x^{2}$ $\Rightarrow dy/dx = (3y - 3x^{2})/(3y^{2} - 3x)$ $= (y - x^{2})/(y^{2} - x)^{*}$	B1B1 M1 A1cao [4]	LHS, RHS Condone $3xdy/dx+y$ (i.e.with missing bracket) if recovered thereafter collecting terms in dy/dx and factorising NB AG	or equivalent if re-arranged. ft correct algebra on incorrect expressions with two dy/dx terms Ignore starting with 'dy/dx =' unless pursued
	(ii)	TP when $y - x^2 = 0$ $\Rightarrow y = x^2$ $\Rightarrow x^3 + x^6 = 3x \cdot x^2$ $\Rightarrow x^6 = 2x^3$ $\Rightarrow x^3 = 2 \text{ (or } x = 0)$ $\Rightarrow x = \sqrt[3]{2}$	M1 M1 A1 A1cao [4]	or $x = \sqrt{y}$ substituting for y in implicit eqn (allow one slip, e.g. x^5) o.e. (so must be exact	or x for y (i.e. $y^{3/2} + y^3 = 3y^{1/2}y$ o.e.) or $y^{3/2} = 2$ $x = 1.2599$ is A0 (but can isw $x = \sqrt[3]{2}$)

5 $e^{2y} = 5 - e^{-x}$ $\Rightarrow 2e^{2y} \frac{dy}{dx} = e^{-x}$	B1 B1	$2e^{2y}\frac{dy}{dx} = \dots$ $= e^{-x}$	or $y = \ln \sqrt{(5 - e^{-x})}$ o.e (e.g. $\frac{1}{2} \ln(5 - e^{-x})$)B1 $\Rightarrow dy/dx = e^{-x}/[2(5 - e^{-x})]$ o.e. B1 (but must be correct)
$\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{\mathrm{e}^{-x}}{2\mathrm{e}^{2y}}$ At (0, ln2) $\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{\mathrm{e}^{-x}}{2\mathrm{e}^{2y}}$ $= \frac{1}{8}$	0 2ln2 M1dep A1cao [4]	substituting $x = 0$, $y = \ln 2$ into their dy/dx dep 1 st B1 – allow one slip	or substituting $x = 0$ into their correct dy/dx

	$(x+y)^{2} = 4x$ $2(x+y)(1+\frac{d y}{d x}) = 4$ $1+\frac{d y}{d x} = \frac{4}{2(x+y)} = \frac{2}{x+y}$	M1 A1	Implicit differentiation of LHS correct expression = 4	Award no marks for solving for y and attempting to differentiate allow one error but must include dy/dx ignore superfluous $dy/dx =$ for M1, and for both A1s if not pursued condone missing brackets
\Rightarrow	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{x+y} - 1 ^*$	A1	www (AG)	A0 if missing brackets in earlier working
⇒	$x^{2} + 2xy + y^{2} = 4x$ $2x + 2x\frac{dy}{dx} + 2y + 2y\frac{dy}{dx} = 4$ $\frac{dy}{dx}(2x + 2y) = 4 - 2x - 2y$ $\frac{dy}{dx} = \frac{4}{2x + 2y} - 1 = \frac{2}{x + y} - 1^{*}$	M1dep A1 A1	Implicit differentiation of LHS dep correct expansion correct expression = 4 (oe after re- arrangement) www (AG)	allow 1 error provided $2xdy/dx$ and $2ydy/dx$ are correct, but must expand $(x + y)^2$ correctly for M1 (so $x^2 + y^2 = 4x$ is M0) ignore superfluous $dy/dx =$ for M1, and for both A1s if not pursued A0 if missing brackets in earlier working
When $x = 1$, $y = 1$, $\frac{dy}{dx} = \frac{2}{1+1} - 1 = 0$ * B1 [4]			(AG) oe (e.g. from $x + y = 2$)	or e.g $2/(x + y) - 1 = 0 \Rightarrow x + y = 2$, $\Rightarrow 4 = 4x$, $\Rightarrow x = 1$, $y = 1$ (oe)

7(i) $\sin(\pi/3) + \cos(\pi/6) = \sqrt{3}/2 + \sqrt{3}/2 = \sqrt{3}$		B1 [1]	must be exact, must show working	Not just $\sin(\pi/3) + \cos(\pi/6) = \sqrt{3}$, if substituting for <i>y</i> and solving for <i>x</i> (or vv) must evaluate $\sin \pi/3$ e.g. not $\arccos(\sqrt{3} - \sin \pi/3)$
(ii) ⇒	$2\cos 2x - \sin y \frac{d y}{d x} = 0$ $2\cos 2x = \sin y \frac{d y}{d x}$	M1 A1	Implicit differentiation correct expression	allow one error, but must have $(\pm) \sin y dy/dx$. Ignore $dy/dx =$ unless pursued. $2\cos 2x dx - \sin y dy = 0$ is M1A1 (could differentiate wrt y, get dx/dy , etc.)
⇒	$\frac{d y}{d x} = \frac{2 \cos 2x}{\sin y}$ When $x = \pi/6$, $y = \pi/6$ $\frac{d y}{d x} = \frac{2 \cos \pi/3}{2} = 2$	A1cao M1dep A1	substituting dep 1 st M1 www	$\frac{-2\cos 2x}{-\sin y} \text{ is A0}$ or 30°
\Rightarrow	$\frac{d}{dx} = \frac{d}{\sin \pi / 6} = 2$	[5]		

8(i) $\frac{d y}{d x} = \frac{1}{3}(1+3x^2)^{-2/3}.6x$ = $2x(1+3x^2)^{-2/3}$	M1 B1 A1 [3]	chain rule $1/3 \ u^{-2/3}$ or $\frac{1}{3}(1+3x^2)^{-2/3}$ o.e but must be '2' (not 6/3) mark final answer
(ii) $3y^2 \frac{dy}{dx} = 6x$ $\Rightarrow dy/dx = 6x/3y^2$ $= \frac{2x}{(1+3x^2)^{2/3}} = 2x(1+3x^2)^{-2/3}$	M1 A1 A1 E1 [4]	$3y^{2} \frac{dy}{dx}$ = 6x if deriving $2x(1+3x^{2})^{-2/3}$, needs a step of working

PhysicsAndMathsTutor.com