

2	(i)	$\begin{aligned} & 2 x+4 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 \\ & \Rightarrow \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{4-2 x}{4 y} \end{aligned}$	M1 A1 A1 [3]	$4 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ correct equation o.e., but mark final answer	Rearranging for y and differentiating explicitly is M0 Ignore superfluous $\mathrm{d} y / \mathrm{d} x=\ldots$ unless used subsequently
2	(ii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow x=2 \\ & \Rightarrow \quad 4+2 y^{2}=8 \Rightarrow y^{2}=2, y=\sqrt{ } 2 \text { or }-\sqrt{ } 2 \end{aligned}$	B1dep B1B1 [3]	dep correct derivative $\sqrt{ } 2,-\sqrt{2}$	can isw, penalise inexact answers of ± 1.41 or better once only -1 for extra solutions found from using $y=0$

4	(i)	$\begin{aligned} & x^{3}+y^{3}=3 x y \\ & \Rightarrow \quad 3 x^{2}+3 y^{2}(\mathrm{~d} y / \mathrm{d} x)=3 x(\mathrm{~d} y / \mathrm{d} x)+3 y \\ & \\ & \\ & \Rightarrow \quad \\ & \Rightarrow \quad\left(3 y^{2}-3 x\right)(\mathrm{d} y / \mathrm{d} x)=3 y-3 x^{2} \\ & \Rightarrow \quad \mathrm{~d} y / \mathrm{d} x=\left(3 y-3 x^{2}\right) /\left(3 y^{2}-3 x\right) \\ & \\ & \\ & \quad=\left(y-x^{2}\right) /\left(y^{2}-x\right)^{*} \end{aligned}$	B1B1 M1 A1cao [4]	LHS, RHS Condone $3 x \mathrm{~d} y / \mathrm{d} x+y$ (i.e.with missing bracket) if recovered thereafter collecting terms in $\mathrm{d} y / \mathrm{d} x$ and factorising NB AG	or equivalent if re-arranged. ft correct algebra on incorrect expressions with two dy/dx terms Ignore starting with ' $\mathrm{d} y / \mathrm{d} x=\ldots$ ' unless pursued
	(ii)	$\begin{aligned} & \text { TP when } y-x^{2}=0 \\ & \Rightarrow \quad y=x^{2} \\ & \Rightarrow \quad x^{3}+x^{6}=3 x \cdot x^{2} \\ & \Rightarrow \quad x^{6}=2 x^{3} \\ & \Rightarrow \quad x^{3}=2(\text { or } x=0) \\ & \Rightarrow \quad x=\sqrt[3]{2} \end{aligned}$	M1 M1 A1 A1cao [4]	or $x=\sqrt{ } y$ substituting for y in implicit eqn (allow one slip, e.g. x^{5}) o.e. (so must be exact	$\text { or } x \text { for } y \text { (i.e. } y^{3 / 2}+y^{3}=3 y^{1 / 2} y \text { o.e.) }$ or $y^{3 / 2}=2$ $x=1.2599 \ldots$ is A0 (but can isw $x=\sqrt[3]{2}$)

$\begin{array}{ll} \mathbf{6} & (x+y)^{2}=4 x \\ \Rightarrow & 2(x+y)\left(1+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=4 \\ \Rightarrow & 1+\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{2(x+y)}=\frac{2}{x+y} \\ \Rightarrow & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2}{x+y}-1^{*} \end{array}$	M1 A1 A1	Implicit differentiation of LHS correct expression $=4$ www (AG)	Award no marks for solving for y and attempting to differentiate allow one error but must include $\mathrm{d} y / \mathrm{d} x$ ignore superfluous $\mathrm{d} y / \mathrm{d} x=\ldots$ for M1, and for both A1s if not pursued condone missing brackets A0 if missing brackets in earlier working
$\begin{array}{ll} \text { or } & x^{2}+2 x y+y^{2}=4 x \\ \Rightarrow & 2 x+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 \\ \Rightarrow & \frac{\mathrm{~d} y}{\mathrm{~d} x}(2 x+2 y)=4-2 x-2 y \\ \Rightarrow & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{4}{2 x+2 y}-1=\frac{2}{x+y}-1^{*} \end{array}$	M1dep A1 A1	Implicit differentiation of LHS dep correct expansion correct expression $=4$ (oe after rearrangement) www (AG)	allow 1 error provided $2 x \mathrm{~d} y / \mathrm{d} x$ and $2 y \mathrm{~d} y / \mathrm{d} x$ are correct, but must expand $(x+y)^{2}$ correctly for M1 (so $x^{2}+y^{2}=4 x$ is M0) ignore superfluous $\mathrm{d} y / \mathrm{d} x=\ldots$ for M1, and for both A1s if not pursued A0 if missing brackets in earlier working
When $x=1, y=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2}{1+1}-1=0$ *	$\begin{aligned} & \mathrm{B} 1 \\ & {[4]} \end{aligned}$	(AG) oe (e.g. from $x+y=2$)	or e.g $2 /(x+y)-1=0 \Rightarrow x+y=2, \Rightarrow 4=4 x, \Rightarrow x=1, y=1$ (oe)

7(i) $\sin (\pi / 3)+\cos (\pi / 6)=\sqrt{ } 3 / 2+\sqrt{ } 3 / 2=\sqrt{ } 3$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	must be exact, must show working	Not just $\sin (\pi / 3)+\cos (\pi / 6)=\sqrt{3}$, if substituting for y and solving for x (or vv) must evaluate $\sin \pi / 3$ e.g. not $\operatorname{arcos}(\sqrt{ } 3-\sin \pi / 3)$
$\begin{array}{ll} \text { (ii) } & 2 \cos 2 x-\sin y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\ \Rightarrow & 2 \cos 2 x=\sin y \frac{\mathrm{~d} y}{\mathrm{~d} x} \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Implicit differentiation correct expression	allow one error, but must have $(\pm) \sin y \mathrm{~d} y / \mathrm{d} x$. Ignore $\mathrm{d} y / \mathrm{d} x=\ldots$ unless pursued. $2 \cos 2 x \mathrm{~d} x-\sin y \mathrm{~d} y=0$ is M1A1 (could differentiate wrt y, get $\mathrm{d} x / \mathrm{d} y$, etc.)
$\Rightarrow \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \cos 2 x}{\sin y}$	A1cao		$\underline{-2 \cos 2 x} \text { is } \mathrm{A} 0$
$\Rightarrow \quad \begin{aligned} & \text { When } x=\pi / 6, y=\pi / 6 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 \cos \pi / 3}{\sin \pi / 6}=2 \end{aligned}$	M1dep A1 [5]	substituting dep $1^{\text {st }}$ M1 www	$\begin{aligned} & -\sin y \\ & \text { or } 30^{\circ} \end{aligned}$

$\text { 8(i) } \quad \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{3}\left(1+3 x^{2}\right)^{-2 / 3} \cdot 6 x \\ & =2 x\left(1+3 x^{2}\right)^{-2 / 3} \end{aligned}$	M1 B1 A1 [3]	chain rule $1 / 3 u^{-2 / 3} \text { or } \frac{1}{3}\left(1+3 x^{2}\right)^{-2 / 3}$ o.e but must be ' 2 ' (not 6/3) mark final answer
$\text { (ii) } \begin{aligned} 3 y^{2} \frac{d y}{d x} & =6 x \\ \Rightarrow \quad \mathrm{~d} y / \mathrm{d} x & =6 x / 3 y^{2} \\ & =\frac{2 x}{\left(1+3 x^{2}\right)^{2 / 3}}=2 x\left(1+3 x^{2}\right)^{-2 / 3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { E1 } \\ & \text { [4] } \end{aligned}$	$\begin{aligned} & 3 y^{2} \frac{d y}{d x} \\ & =6 x \end{aligned}$ if deriving $2 x\left(1+3 x^{2}\right)^{-2 / 3}$, needs a step of working

